Exercise 21

Find the intersection of the planes $x+(y-1)+z=0$ and $-x+(y+1)-z=0$.

Solution

The intersection for two planes is a straight line, which can be parameterized as

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector and \mathbf{b} is the position vector for any point on the line. The normal vectors to the given planes are obtained from the coefficients of x, y, and $z:(1,1,1)$ and $(-1,1,-1)$. Take the cross product of these two to find the direction vector of the line.
$\mathbf{m}=(1,1,1) \times(-1,1,-1)=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 1 & 1 & 1 \\ -1 & 1 & -1\end{array}\right|=(-1-1) \hat{\mathbf{x}}-(-1+1) \hat{\mathbf{y}}+(1+1) \hat{\mathbf{z}}=-2 \hat{\mathbf{x}}+2 \hat{\mathbf{z}}=(-2,0,2)$
All that's left is to find a point common to both planes.

$$
\left.\begin{array}{r}
x+(y-1)+z=0 \\
-x+(y+1)-z=0
\end{array}\right\} \quad \rightarrow \quad 2 y=0 \quad \rightarrow \quad y=0
$$

Choose $x=1, y=0$, and $z=0$, for example. Then $\mathbf{b}=(1,0,0)$, and the line is

$$
\begin{aligned}
\mathbf{y}(t) & =\mathbf{m} t+\mathbf{b} \\
& =(-2,0,2) t+(1,0,0) \\
& =(-2 t+1,0,2 t) .
\end{aligned}
$$

In green is $x+(y-1)+z=0$, and in blue is $-x+(y+1)-z=0$.
This answer is in disagreement with the one at the back of the book. $x=t, y=2 t$, and $z=-5 t$ satisfies neither $x+(y-1)+z=0$ nor $-x+(y+1)-z=0$, but it does satisfy the equations in Exercise 20.

